Order-Reducing Form Symmetries and Semiconjugate Factorizations of Difference Equations

نویسنده

  • H. SEDAGHAT
چکیده

The scalar difference equation xn+1 = fn(xn, xn−1, · · · , xn−k) may exhibit symmetries in its form that allow for reduction of order through substitution or a change of variables. Such form symmetries can be defined generally using the semiconjugate relation on a group which yields a reduction of order through the semiconjugate factorization of the difference equation of order k + 1 into equations of lesser orders. Different classes of equations are considered including separable equations and homogeneous equations of degree 1. Applications include giving a complete factorization of the linear non-homogeneous difference equation of order k + 1 into a system of k + 1 first order linear non-homogeneous equations in which the coefficients are the eigenvalues of the higher order equation. Form symmetries are also used to explain the remarkably complex, multistable behavior of a separable, second order exponential equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiconjugate Factorization and Reduction of Order in Difference Equations

We discuss a general method by which a higher order difference equation on a group is transformed into an equivalent triangular system of two difference equations of lower orders. This breakdown into lower order equations is based on the existence of a semiconjugate relation between the unfolding map of the difference equation and a lower dimensional mapping that unfolds a lower order differenc...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Polynomial and non-polynomial solutions set for wave equation with using Lie point symmetries

‎This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE)‎. ‎We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry‎. ‎We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation‎. ‎A generalized procedure for polynomial solution is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008